Hidden Markov models (HMMs) isolated word recognizer with the optimization of acoustical analysis and modeling techniques
نویسندگان
چکیده
Most state of the art automatic speech recognition (ASR) systems are typically based on continuous Hidden Markov Models (HMMs) as acoustic modeling technique. It has been shown that the performance of HMM speech recognizers may be affected by a bad choice of the type of acoustic feature parameters in the acoustic front end module. For these reasons, we propose in this paper a dedicated isolated word recognition system based on HMMs which was carefully optimized specifically at the acoustic analysis and HMM acoustical modeling levels. Such conception was tested and valued on Hidden Markov model toolkit platform (HTK). Systems performances were evaluated using the TIMIT database. One comparative study was carried out using two types of speech analysis: The cepstral method referred to as Mel frequency cepstral coefficients (MFCC) and the perceptual linear predictive (PLP) coding are used for different tests so as to evaluate and reinforce our conception. The frame shift duration effect of the acoustic analysis as well as the addition of the dynamic coefficients of the acoustic parameters (MFCC and PLP) were carefully tested in order to look for high accuracy for our optimized isolated word recognition (IWR) system. Finally, various experiments related to the HMM topology have been carried out in order to get better recognition accuracies. In fact, the effect of some modeling parameters of HMM on the recognition accuracy of the IWR system such as the number of states as well as the number of Gaussian mixtures were analyzed in order to get the optimal HMM topology.
منابع مشابه
Improved Hidden Markov Models Speech Recognition Using Radial Basis Function Networks
A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...
متن کاملImproved Hidden Markov Model Speech Recognition Using Radial Basis Function Networks
A high performance speaker-independent isolated-word hybrid speech recognizer was developed which combines Hidden Markov Models (HMMs) and Radial Basis Function (RBF) neural networks. In recognition experiments using a speaker-independent E-set database, the hybrid recognizer had an error rate of 11.5% compared to 15.7% for the robust unimodal Gaussian HMM recognizer upon which the hybrid syste...
متن کاملSpeech recognition using HMMs with quantized parameters
In this paper we describe the structure and examine the performance of a recognition engine based on hidden Markov models (HMMs) with quantized parameters (qHMM). The main goal of qHMMs is to enable a low complexity implementation without sacrificing the classification performance. In the tests with a whole word digit dialler engine and a phoneme based isolated word recognizer we managed to pre...
متن کاملA Parallel Implementation of a Hidden Markov Modelwith Duration Modeling for Speech Recognition yCarl
Hidden Markov models (HMMs) are currently the most successful paradigm for speech recognition. Although explicit duration continuous HMMs more accurately model speech than HMMs with implicit duration modeling, the cost of accurate duration modeling is often considered prohibitive. This paper describes a parallel implementation of an HMM with explicit duration modeling for spoken language recogn...
متن کاملAn Analytical Handwritten Word Recognition System with Word-level Discriminant Training
This paper describes an analytical handwritten word recognition system combining Neural Networks (NN) and Hidden Markov Models (HMM). Using a fast left-right slicing method, we generate a segmentation graph that describes all possible ways to segment a word into characters. The NN computes the observation probabilities for each character hypothesis in the segmentation graph. Then, using concate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011